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CRITICAL DAMPING IN CERTAIN LINEAR
CONTINUOUS DYNAMIC SYSTEMS

D. E. BESKOS*
Department of Civil and Mineral Engineering
University of Minnesota, Minneapelis, Minnesota 55455, U.S.A.
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The Technological Institute
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Abstract
Free damped vibrations of linear elastic structures composed of uniform
beam elements with a continuous distribution of mass are studied. Axial,
torsional and flexural vibrations are considered. The amount of damping,
which can be either internal or external viscous type, varies among the

various beam elements of the structure resulting in many critical damping

possibilities. A general method is developed which, with the aid of dynamic

Q! stiffness influence coefficients defined for every element, determines the

s

"eritical damping surfaces” of the system. These surfaces represent the
i loci of combinations of amounts of damping leading to critically damped

motion and thus separating regions of partial or complete underdamping from

Rt

those of overdamping. The dimension of a critical damping surface is equal
to the number of independent amounts of damping present in the system,
while the number of these surfaces is infinite, i.e., equal to the number
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of degrees of freedom of the system. Three examples are presented in detail

to illustrate the proposed method for determining critical damping and

‘ demonstrate its importance.
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1. INTRODUCTION
The importance of damping as a means of reducing the response of a
vibrating structural system is well known. Conventionally, the amount of
damping in a linear structural system is expressed as a percentage of the
critical damping or modal critical damping values depending on whether
damping is everywhere the same in the structure or varies modally, respect-
ively. Thus, it is possible to estimate directly the amount of damping
in the structure and to characterize that structure as underdamped, over-
damped or critically damped. This knowledge consequently helps one to
control the response by appropriate changes of the damping in the structure.

However, for linear structural systems with different viscous damping
values for some or all of their members, the problem of determining critical
damping becomes much more difficult, because many critical damping possibili-
ties arise. Thi; problem is of considerable importance because the availa-
bility of different damping values for different members of a structure
provides a more rational way of representing damping properties and permits
more effective response control by taking advantage of the freedom of varying
the damping of a Targe number of elements.

The problem of critical damping is part of the general problem of
structural free damped vibration, which is concerned with the determination
of natural frequencies and modal shapes of viscously damped linear systems.
Necessary and sufficient conditions under which discrete and continuous
damped 1inear dynamic systems possess classical normal modes have been
established by Caughey and 0'Kelly [1]. In a recent paper, Beskos and Boley
[2], studied free viscously damped vibrations of linear discrete systems in
which the amount of damping varied among the various structural members,

thus resulting in many "critical damping surfaces." These surfaces represent




the loci of combinations of amounts of damping leading to critically damped
motion, and thus separate regions of partial or complete underdamping from
those of overdamping. A general method for the determination of critical
damping surfaces of linear discrete systems was developed in [2]. That method
is extended in this paper to certain continuous linear dynamic structural
systems. These include one, two or three dimensional structures consisting
of uniform beam elements with a continuous distribution of mass, undergoing
flexural, torsional or axial free motion, with either internal viscoelastic
or external viscous damping. The method developed in [2] is applied to

these systems in conjunction with the use of a new kind of dynamic stiffness
influence coefficients defined for the aforementioned motions (flexural,
torsional and axial) on the basis of the exact solution of the equation of
free damped motion of a beam element. Thus, the dynamic problem is reduced .
to a static-1ike one and the exact solution of the problem is obtained. The
use and importance of dynamic stiffness influence coefficients in treating
free and forced vibration problems of beam structures has been demonstrated
elsewhere [3-8].

To the authors knowledge, there is only one work in the literature,
namely that of Kolou¥ek [9], which deals with viscously damped frameworks
with a continuous distribution of mass and different amounts of damping
among the various structural members. However, that work deals only with
the underdamped steady-state forced vibration case by employing a kind of
dynamic stiffness influence coefficients in complex number form. Although
only a certain class of continuous structures is considered in the present
paper, namely that of beam structures, the results obtained are representa-

tive in that they demonstrate special features common to all continuous
Other

structures characterized by an infinite number of degrees of freedom.




continuous structures for which dynamic stiffness influence coefficients
can be constructed can also be studied by the proposed method. If this is
not feasible, a finite element discretization and modeling of the structure
as a discrete system with a finite number of degrees of freedom can be
always done and the method of [2] then appiied. Three examples dealing
with axial, torsional and flexural vibrations are presented in detail in this
paper ;ojiIlthrate the proposed method and demonstrate the importance of
critical‘damping surfaces.
2. FREE DAMPED VIBRATIONS OF A BEAM ELEMENT

In this section, dynamic stiffness influence coefficients for free
axial, torsional and flexural vibratory motions of a damped linear elastic
uniform beam element are defined and constructed. Either internal visco-
elastic or external viscous damping is assumed. Internal viscoelastic
damping is accounted for by assuming, for reasons of simplicity, that the
beam material is a Kelvin solid, i.e., with a ane-dimensional constitutive
equation of the form

o = H(1+gd/y) e , M
where o is the stress, € is the strain, H stands for the modulus of elasticity
E or the shear modulus G, g is the damping coefficient and t represents time.
More general viscoelastic models as described, for example, in [10] could
also have been used without any particular difficulty. Equation (1) indicates
that, under one dimensional states of stress, the formuIation of the damped
beam problem can be obtained from that of the corresponding undamped one
by simply replacing H by H(1 + g d/dt)' When external viscous damping is
present, it is accounted for in the displacement equation of the beam motion

by a damping force per unit length P proportional to the velocity and opposing




the motion, i.e.,

P = - f(dv/g,) » (2)

where f is the coefficient of damping and v is the beam displacement.
Consider a uniform linear elastic beam element 1-2 of length L (Fig. 1)
undergoing axial, torsional and flexural free damped motions which, on the
basis of a strength-of-materials fheory. are governed, respectively, by
the following uncoupled equations:
EAu" + g EAU" - mii = 0 ,
(AC/)¢" + g(AC/J}¢" - m§ = 0 , (3)

EIv"" + g EI\.)"“ +my =0 .

for internal viscoelastic damping of the Kelvin type, and
EAU" - fu -mi =0,
(AC/J)¢" - f$ -mp =0, (4)

EIV" + fv +m =0 ,

for external viscous damping, where u = u(x,t), v = v(x,t) and ¢ = ¢(x,t) are
the axial, lateral and angular displacements of the beam, respectively, E is
the modulus of elasticity g and f are the coefficients of internal visco-
i elastic and external viscous damping, respectively, m is the mass per unit
: length of the beam, A,I, J and C are the area, moment of inertia, polar
{i moment of inertia and torsional rigidity of the cross-section of the beam,
respectively, primes indicate differentiation with respect to the distance
7 Xx along the length of the beam and dots indicate differentiation with respect
| to the time t.
By assuming solutions of the form
At
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where u, ¢ and v are functions of x only, and A is, in general, a complex

number, equations (3) and (4) are reduced to ;g

by} 2- =

u - K]u o ’

3 -k =0, (6)

e =0,
; where

k2 = m@

;= m¥EA(L + @),

K5 = mZ/(Ac/0)(1 + 90) (7)

3 akt = m/EI(1 + @A) ,

for internal viscoelastic damping, and

r K§ = (m? + fA)/RE ,
K2 = (m? + £)/(ACA) , (8)
a? = (m? + )En

for external viscous damping.

The general case of free damped motion is described by the solution of

equations (6), namely

Kyx -Kyx ,

us= D, e’  +F e
$=0, ef2* 4 Fy ekex | (9)

vs= er (03cost + FssinKx) + e'Kx(D4cost + F4sinKx),

where D, F, D,, F,, D3, Fg, D4 and F, are constants. Consider the beam
element 1-2 of Fig. 2 with nodes 1 and 2, which has one, one and two degrees
of freedom per node for axial, torsional and flexural motfons, respectively.
Figure 2 shows the positive directions of the nodal displacements and the

corresponding nodal forces for the three kinds of motion. The dynamic

stiffness influence coefficient Dij is defined as the force at the ith

degree of freedom due to a displacement l-eAt at the Jth degree of freedom,
while all the other displacements are zero. On the basis of this definition

and by using the displacement functions (9) as well as the force-displacement




relations
u(x)
T(x)
V(x)
M(x)

= AE u'(x) ,
= Co'(x)
=-EIV'"(x) ,

= - EIV'(x) ,

(10)

with positive directions as indicated in Fig. 1, one can construct the Dij

coefficients for the three kinds of motion considered here.

Thus, with

the sign convention of Fig. 2, the following element nodal force-displace-

ment relations in terms of the Dij coefficients result:
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= Dy = 2MC (v2 + dysc - 1),
= Dy *- Dy = - Dy = NKIYY - (1 - 29T,

= 0y = (KN -v2(s® + sc v €) + y(-s® - scP + AT,
04] = - 023 = - D32 = (2NK/&)(S3 + Scz + s)(YZ -v),
= Dy = NGy2 - dyes - 1), - (18)

2

* D2 C 2V A y(s + sc? - ¢) + y(sP + s+ )T,

N = 2EIK/[y2 - 2v(1 + 2s%) +11,

Y = eZKL » S =sinkL , ¢ = coskL ,
and where K‘, K2 and K are given by (7) and (8) for internal and external
damping, respectively.

3. CRITICAL DAMPING SURFACES

Consider a three-dimensional beam structure consisting of a finite number
of uniform beam elements with a continuous distribution of mass and with
different amounts of damping under free motion. The damping in every beam
element may be internal viscoelastic or external viscous, or a combination
of these, and may be, in general, different for different kinds of free motion.
The free motion of every element (and so that of the whole structure) is a
combination of axial, torsional and flexural motion. Coupling effects between
the various motions are neglected in this work.

The general equation of free motion for the above described beam structure
is of the form (e.g. [7])

[01¢x} = [D](e3e*® = 0} , (17)
where [D] is the structural dynamic stiffness matrix, whose elements are
combinations of the dynamic stiffness influence coefficients Dij for axial,
torsional and flexural motion given by (14)-(16), resulting from the super-
position of the various element dynamic stiffness matrices, and {x} and {¢}

are the vectors of the nodal structural displacements and displacement




amplitudes, respectively. The matrix [D] is thus a function of the damping

properties of the various beam elements and the eigenvalues A defined by
equations (5). Thus, in general,

(0] = (0(huM)] 5 (r=1.2,...q) , - (18)
where h represents amounts of damping and q is an integer, in general, dif-
ferent from the order p of the matrix [D].

Equation (17) has nontrivial solutions if, and only if,

det{0(h,A)] = {D(hoA)| = 0. (19) i
The characteristic equation (19) is a transcendental equation in A which
has an infinite number of roots corresponding to the infinite number of degrees
of freedom of the structure under consideration. These roots can be negative
real or complex, resulting in overdamped or critically damped aperiodically
decaying free motion, or in underdamped oscillatory decaying free motion,

respectively. If the system has no damping (hr = 0), equation (19) is satis-

fied for an infinite number of imaginary values of A of the form iwo, where
W represents natural frequencies and i = /~1. If some (all) of the roots
of (19) correspond to overdamping, underdamping or critical damping, the
structure is called partially (completely) overdamped, underdamped or critically
damped, respectively. Once the roots A of (19) have been determined, one can
solve (17) for the in general complex modal shapes {¢}.

For overdamping or critical damping the roots of (19) are of the form

A=-b, (b>0), (20)
and (19) becomes

[o(h,., -b)| =0 . (21)
In the q-dimensional space with coordinates h. (r = 1,2,...q), equation (21)
represents a family of q-dimensional surfaces corresponding to overdamping
or critical damping. The problem consists of determining that b which cor-

responds to the "critical damping surface." There are actually infinitely




e . o el
T e b e

many “"critical damping surfaces" since there are as many critical damping
possibilities as the number of the roots A. The general method for deter-
mining critical damping surfaces of linear discrete damped systems developed
in [2], is extented here to linear continuous systems described by (17).
Thus, having in mind that critical damping represents the threshold between

overdamping and underdamping, one can conclude that among the S, surfaces

b

described by (21), the critical surface Scr is the one for which the damping

is a minimum, i.e.,
(d/db)(‘o(hr, 'b)l) =0 E]

dhr/db =0, r=1,2,..,9 .

(22)

In principle, equation (22) provides the be, as 2 function of the h.'s and
thus the equation of critical damping surfaces is given by {(21) with b = bcr’
i.e., by

]D(hr, 'bcr)] =0 . (23)

In practice, however, one has to solve the system of simultaneous nonlinear
equations (21) and (22) numerically in a manner analogous to that described
in [2].

The above method for determining critical damping surfaces is quite general
and applicable, in principle, to the most general space beam structure; how-
ever, the practical applicability of the method is limited to small order
structures, because, to the authors knowledge, there is presently no efficient
numerical method available for treating equations (22). However, things are
greatly simplified in the particular cases in which only axial or torsional
or flexural free motion arise and one kind of damping (internal or external)
is under consideration. Fortunately, these cases deal with very large classes
of structures, such as plane frames or trusses which are usually considered

to undergo only flexural free vibrations and simple and composite beams or
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shafts undergoing axial or torsional free vibrations, respectively.

Consider a beam structure undergoing only axial or torsional or flexural
free vibrations under conditions of either internal or external damping.
The coefficients Ky po K2r and Kr for axial, torsional and flexural free
motion, respectively, of the rt" beam element (r=1,2,...,q,q¢q) are given

on account of (7) and (8) by

K3, = [m/(E8) I0A%/(1 + g )],
K2, = [m/(AC/3) INZ/(1 + g, A)1, (22)
4 .

Y= ms(ED I0%(+ g0,

for internal viscoelastic damping, and

4K

K3, = [m/(€A) JOZ + 28 2) ,
K5, = [m/Ac/a 102 + 28 ) , (25)

a? = [m/(ED) J(0% + 28 2) ,

for external viscous damping with

fr = Zmrs ro (26)

and where the coefficients g, and Br_in (24)and (25) are, in general, different

for different kinds of motion. For the undamped case of the rth beam element

for which
An = i Won * (n=1,2,..., @) , (27)
where Won represents the natural frequency in the nth mode of vibration and
i = /<1 , equations (7) and (8) are replaced by
2 _ 2
2 - 2 '
KZY‘O = - won [mr/(Ac/J)rJ ’ (28)

4 2
4Kro = Won [mr/(EI)r]'
When one particular kind of free motion of the beam structure {s consid-

ered, the structural dynamic matrix [D] consists of linear combinations of

Dij coefficients with the same type of K coefficients. In that case (22)

B e DRI




becomes
(d7db)(|D]) =§(d/dKr)(|D|)-(dKr/db) =0,
(dhr/db) = 0, r=1,2,....9 ,

(29)

which can be recognized as direct extensions of the corresponding equations
for discrete systems [2]. The derivatives dKr/db for the various cases of
motion and kinds of damping can be computed from (24) and (25) for A = -b,
and in conjunction with (29), take the following forms:
&, Jdb = [m /2K (EA)_ b(2-g.b)/(1 - g )2 | |
Ky /db = [m /2K, (AC/),] b(2-g b)/(1-g,b)2 (30)
& Jdb = [m/16K> (E1) ] b(2 - g b)/(1 - g b)

for internal viscoelastic damping, and
dK]r/db = [mr/K]r(EA)r](b ‘Br) 3
dKy./db = [m /K, (AC/J) 1(b -8B ), (31)
_ 3
dK /db = [m,.ISKr (El)r](b -8 r) s
for external viscous damping.

The particular point h] = h2=...=h = h of a critical damping surface

q
for which conditions (29) hold true can be easily determined. Thus, on

it

account of (30) and (31) withg =8 and g. = g, one can easily see that

- «
i A —a

(29)] is satisfied for

2-gb=0, (32)
for internal viscoelastic damping and

b-8 =0, (33)
for external viscous damping. Substitution of (32) and (33) into (24) and (25)
in conjunction with A = -b,gr =g, andsr =8 and comparison of the results
with (28) leads to a critical value bcr of b given by

Brer = Yon > M= e - (34)
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for all kinds of motions and damping cases. Thus, (23) takes the form

[oth, - w )| =0 (35)

and serves to determine the value of h = hn for every n numerically. Notice
that in this case the structure possesses classical normal modes. Equation
(35) also indicates that a beam structure with a continuous distribution
of mass, one kind of damping and under one kind of free motion has an in-
finite number of critical damping surfaces and consequently complete critical
damping or overdamping are achieved for n + =,

The above results could have been obtained in a different way as follows:

When hy = h = h_ = h, combination of (24), (25) and (28) leads to the

2 = e » q
conclusion that the value of An in any mode n will be such that
2 _ 2
A QO+ o) = - (36)
for internal viscoelastic damping and
2 _ 2
ALt 28BN = -w (37)
for external viscous damping. Under conditions of underdamping
Mg T by ko ey, (38)
where W, represents the damped natural frequency in the nth mode and by

combining (38) with (36) and (37} one obtains the relations

by = (U2auy, + vy = (1/2)uy, (4 - g%)1/? (39)
for internal viscoelastic damping, and

b= 8, w =(u -82)W2 (40)

n ® n on

for external viscous damping. Considering critical damping as the threshold
between underdamping and overdamping, one can imagine the state of critical
damping as the limit of the underdamping state as the amount of damping
increases so that W, approaches zero. Thus, the conditions of critical
damping, in view of (39) and (40), are

9 = 2/bncr ’ bncr ® Yn (41)
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for internal viscoelastic damping, and

B = bncr ’ bncr © Yon ° (42)
for external viscous damping. These equations are identical with (32)-(34).

Three jllustrative examples are given below.

4. EXAMPLES

Example 1

Consider a uniform cantilever beam of length L, mass per unit length
m and axial rigidity AE. In this case, damping is uniform; the example is
included simply to illustrate the proposed method in a classical case. The

equation of free axial vibration of this beam, obtained from (11) for U =

U, = 0 and U& = 0 reads

Dy, Uy =0 . (43)
Thus, equation (21), on account of (]4), (24)], (25)] and (43), becomes

coth(K]L) =0 (24)
where

K2 = (wAE)[bY/(1 + gb)] (45)
for internal viscoelastic damping, and

K = (m/AE)(b% - 28b) (46)

for external viscous damping. The equation of critical damping surfaces is

again given by (44) but with (45) and (46) being replaced by

K = (wADWZ /(1 + ug,)] (47)
K2 = (mAE) W2, - 28ug,) (48)

for internal and external damping, respectively, in view of the condition
(34) for critical damping. The natural fregquencies g
(44) with K given by (28)] and are of the form

wey = (172L)(2n - 1) »AE/m, n=1,2,.., = (49)
Thus, for both kinds of damping, the critical damping surfaces are actually

n can be obtained from




|
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an infinite set of points which, on account of (32) - (34), are given by
g, *° 2/mon (50)

for internal viscoelastic damping, and

Pp = Won (s1)
for external viscous dampma

Example 2

Consider the composite shaft 1-2-3 of Fig. 3 which consists of two uniform
beams of circular cross sections with length L and shear modulus G. The
polar moment of inertia, the cross-sectional area, the mass per unit of length
and the external viscous damping coefficient are symbolized by JI’ Al’ Mys
By and JII’ AII’ mes 811 for the beams (1-2) = I and (2-3) = 11, respectively.
The equation of free torsional motion of this shaft is obtained with the help
of (12) by superimposing the dynamic stiffnesses of the two beam elements I
and II and applying the boundary conditions 3} = 35 = 0. Thus, equation (21)
becomes

[(by,); + (03,);;1 = 0 (52)
where, from (15) for a circular cross section (C = GJ),

(032); - 63Ky coth(KyL)

21
(53)

with K, and Ky;; given by (27)2 with A = -b and C = GJ. Equation (29),
with the aid of (52), (53) and (3'I)2 with C = GJ, yields
(d(D3,)1/dKpp ) (dKyp/db) + (d(DY4) 1 /Aoy ) (dKypp/db) = 0 (54)

where

a(n,,), /d Ky =G Leath(Kyrl) - Koy Lcsch(KuL)]

d(D", )../dK G th(K -K he(K .
(04, )lI/ m” Jq{coth( an-) o€ s¢ ( z“!-)] (s5)
dxa/db = (m/KyATG)(b - 8,) , 1 =1, 1II.

The natural frequencies of the system can be obtained from (52) with

2 .2 2. 2
Ko = K11 = K won (P/6) (s6)




represents the mass density of the shaft material. Use of (56) and (57)

reduces (52) to

(3; + 9pq) cot(KL) = 0 (58)
with solution

w, = (1/2)(2n-1)mkfp, n=1,2,..., =, (59)

The critical damping surfaces are described by (52) with bcr obtained as
a function of 8, andBII from (54) and (55) and form an infinite set of
curves in theBI- BII plane. For the particular case of 811 =0, JI/JII =
2,G/p=1andL =1, a computer solution of the simultaneous equations (52),
(54) and (55) provides the following values for the first three roots Byt

B = 2.03, 5.16, 8.31. (60)
These values correspond to the first three natural frequencies

wgy = ™2 = 1.571, w, = 32 = 4712, wyy=5u/2=7.854, (61)
and indicate that the critical damping surfaces are just an infinite set of
points along the BI axis.
Example 3

Consider the uniform continuous beam 1-2-3 of Fig. 4 with bending rigidity
EI and mass per unit of length m. The structure consists of two beam elements
of the same length L but with different external viscous damping coefficients
By and B, as shown in Fig. 4. The equation of free flexural motion of this
continuous beam is obtained with the aid of (13) by superimposing the dynamic
stiffnesses of the two elements (1-2) = I and (2-3) = II and applying the
boundary conditions 31. 5'1= 32- 33= '9'3 = 0. Thus, equation (21) becomes

[(Dgg); + (Dpp)p 0 =0, (62)




where (044)1 = (022)I and (022)II are furnished by (16) with KI and KII given
by (25)3 with A = -b.
Equation (29), with the aid of (62), (31)3 and (16), yields
(d(D,,) /dK)(dKp/db) + (d(D,5)  /dK ) (K /db) = 0
dK./db = (/8 ET)(b -8) ,
d(Dzz)i/dKi = {[2(72 - 4ycs - 1) + 8K1.(y2 - 2ycs -ycz + ysz)] .
. [v2 - 2v(1+2s?) + 1] - 8K, (Y2 - 4ycs - 1)(Y2-Y-2YSZ-ZYCS)}/
1 ¥ - 20+ 28H) 4102,
Ky = (2 EN®E - 68 )Y4 . i =1, 11

(63)

The natural frequencies of the system can be obtained from (62) with

4 _ 4 2
K[ = 4Ky = - (WED) w (64)
or directly from
2022 =0, (65)

where the dynamic stiffness coefficient without damping 022 is taken from

reference [4] or [7] and is of the form

022 = EIK(sinKLcoshKL - cosKLsinhKL)/{1-cosKLcoshKL) (66)
; with
i K2 = w 7T (67)

! Use of (66) reduces (65) to’

| tankL - tanhKL = 0 , (68)
which has an infinite number of roots, the first three of which are given
to third decimal accuracy by »

: KL = 3.927, 7.069 , 10.210. (69)

s 1 Thus, by combining (67) and (69), the following expressions for the first

three natural frequencies are obtained:

‘ Won = (Uﬁ/l-z)' EI/m, n=1,2,3,
(70)
uf = 15.421, ug = 49.971, u§ = 104.244
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The critical damping surfaces are described by (62) with bcr obtained

as a function of 8 and BII from (63) and form an infinite set of nonlinear
curves in the BI"BII plane. All these curves are symmetric about the line
8=B » as it can be very easily seen from (16) and (25)3 with A=-b that

an interchange of 8; and 811 leaves (62) unaffected; this was expected

in view of the symmetry of the s;ructure. For the particular points of the
curves for which 8,=8 (=8, (42) yields

Bn = bncr' = "’on ° (7])

Figure 5 shows the first three critical damping curves corresponding to the
first three frequencies of (70). These curves were constructed by numerically
solving the system of simultaneous equations (62) and (63) for EI =L =m = 1;
the computations were done by computer using complex arithmetic due to the
fact that K, and K;; in (63)4 are, in general, complex numbers. It was ob-
served during the computation that the values of bcr for every curve were

very close to the value of bcr corresponding to the pointBI =8 I’ i.e.,

to the value Bncr =W, This suggested an approximate construction of the

curves on the basis of (62) with

4x§ = (WED)(w,, = 28 u,,)

(72)
i=1,11, n=12,...,%

These approximate curves drawn in Fig. 5 for EI = L = m = 1 practically cdincide
with the "exact" curves, Eventhough this suggests a simple way to construct very
good approximate curves, no generalizations beyond the above observations are
presently available. The critical damping curves C],Cz,...oa of the structure
of Fig. 4 with the exception of the C» are all partially critical and separate
the BI - B“ plane in an infinite number of regions R] ,Rz...,Reo of which

only the first four are shown in Fig. 5. Region R] represents complete under-
damping, while complete overdamping is achieved only at infinity as all the
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other regions represent partial overdamping.

The damping curves of Fig. 5 are the "exact" damping curves of the
continuous beam as computed with the aid of the dynamic stiffness influence
coefficients constructed on the basis of the exact equations of motion.

It is interesting to study the degree of approximation obtained by con-
structing approximate critical damping curves of the continuous beam, on
the assumption that the structure is discretized by lumping the mass as
shown in the alternative models of Fig. 6. The equation of free flexural
motion of the two degrees of freedom model of Fig. 6(a), on the assumption
that its viscous damping matrix is diagonal and by eliminating rotational

degrees of freedom, takes the form

M 0 i] . c] 0 x] . 12E1 11 3 x] . (4] (73)
0o w|]|%, 0 ¢, |lx, 7027 3 1|lx, 0

where Xy € and Xps €y represent vertical deflections and damping coefficients
for the points 1 and 2, respectively. The static stiffness coefficients for

a beam element were taken from [11]. The natural frequencies wy of the two
degrees of freedom system are the roots of the equation

-u§M'+115 3

2 = 0 (74)
3¢ -moM' + 11
where
£ = 12E1/7(2')°, (75)

From the approximate method of [2], the equations of the critical damping
curves of the system are
2 1 0 B] 0 1mn 3
w2 " Sl + g =0
0 1 0 82 3 1
where

CI.ZM.BI’ CZSZM'BZQ n'],z.
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L=m=1],

13.714 , (77)

For the case of EIl

M'=0.5, ¢
and the solution of (74) is

wyy = 14.813, w,, = 19.596 (78)
forming a lower bound to the exact solution (70). A similar computation
for the four degrees of freedom model of Fig. 6(b) provides the following
values for the natural frequencies:
woy = 15.357, wy, = 22.055, w, 4 = 45.656, Woq = 41.254. (79)
It is obvious from (72), (78) and (79) that both of the discrete systems
provide an acceptable approximation for the first natural frequency only.
Consequently, both of the discrete systems can provide a good approximation
of only the first critical damping curve. Figure 7 shows the first critical
damping curve for the continuous beam as obtained by the continuous as well
as the two discrete models. The main conclusion of this comparison study
is that for discrete lumped-mass models only the first few critical damping
surfaces are close to the exact ones. Accuracy of representation of the
higher damping surfaces increases by increasing the order of the discrete
model.

5. CONCLUSIONS

On the basis of the preceding discussion, the following conclusions can
be drawn with regard to the free motion of linear structures composed of
beams with a continuous distribution of mass and different amounts of internal
and/or external viscous damping:
1) There exist infinitely many “critical damping surfaces" for every struc-
ture which represent the loci of combinations of damping leading to partial
or complete critical damped motion and thus separating regions of partial or

complete underdamping from those of overdamping. The dimension of these

puy o L ‘ \\
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\ independent amounts of /
surfaces is equal to the number of¥Vdamping present in the system.

2) A general method is proposed for determining the equations of these
critical damping surfaces in conjunction with dynamic stiffness influence
coefficients which are functions of the damping and inertia properties of

the structure. This method is greatly simplified for systems which undergo
only one kind of motion, namely axial or torsional or flexural. For these
systems there are infinitely many partially critical damping surfaces
creating one region of complete underdamping and infinitely many regions of
partial overdamping as complete critical damping or overdamping are achieved
only for infinite damping values.

3) The critical damping surfaces obtained by the proposed method represent
the exact solution of the problem since they are constructed with the aid

of dynamic stiffness influence coefficients based on the exact solution of
the equation of motion. For complicated beam structures or other structures
with continuous distribution of stiffness, mass and damping properties, such
as discs, plates and shells, a discretization of the structure and application
of the methods of reference [2] is probably the most practical approach. The
resulting damping surfaces will of course be approximate, with a degree of
accuracy decreasing as surfaces corresponding to higher frequencies are con-

sidered.
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CAPTIONS OF THE FIGURES

Positive beam displacements and forces in mechanics convention.
Positive beam nodal displacements and forces.

Composite shaft in torsional free motion for Example 2.
Continuous beam in flexural free motion for Example 3.

The first three critical damping curves of the continuous
beam of Example 3.

Lumped-mass discretizations of the continuous beam of _
Example 3. ?

Approximations of the first critical damping curve of the
structure of Example 3.
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